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Self-organized criticality in the intermediate phase of rigidity percolation
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Experimental results for covalent glasses have highlighted the existence of a self-organized phase due to the
tendency of glass networks to minimize internal stress. Recently, we have shown that an equilibrated self-
organized two-dimensional lattice-based model also possesses an intermediate phase in which a percolating
rigid cluster exists with a probability between zero and one, depending on the average coordination of the
network. In this paper, we study the properties of this intermediate phase in more detail. We find that micro-
scopic perturbations, such as the addition or removal of a single bond, can affect the rigidity of macroscopic
regions of the network, in particular, creating or destroying percolation. This, together with a power-law
distribution of rigid cluster sizes, suggests that the system is maintained in a critical state on the rigid-floppy
boundary throughout the intermediate phase, a behavior similar to self-organized criticality, but, remarkably, in
a thermodynamically equilibrated state. The distinction between percolating and nonpercolating networks
appears physically meaningless, even though the percolating cluster, when it exists, takes up a finite fraction of
the network. We point out both similarities and differences between the intermediate phase and the critical
point of ordinary percolation models without self-organization. Our results are consistent with an interpretation
of recent experiments on the pressure dependence of Raman frequencies in chalcogenide glasses in terms of

network homogeneity.
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I. INTRODUCTION

The concept of rigidity percolation, first introduced about
25 years ago by Thorpe [1] based on work by Phillips [2],
describes how an elastic network goes from floppy to rigid as
constraints are added to it. This theory has been applied with
success to many systems, including covalent glasses [3-5]
and proteins [6]. In the last decade, however, experimental
studies have shown that the rigidity phase diagram could be
more complex than initially thought, uncovering the pres-
ence of an intermediate phase between the floppy phase and
the stressed-rigid phase, with the system in the intermediate
phase being rigid but unstressed [4,7-20].

A basic explanation for this new phase was first proposed
by Thorpe et al. [3]. It was shown that when the network
self-organizes in order to minimize the stress, the rigid but
unstressed intermediate phase can indeed arise.

In the original work by Thorpe and collaborators [3,21],
as well as subsequent simplified models of chalcogenide
glasses by Micoulaut and Phillips [22,23], networks were
constructed using an “aggregation” process, in which bonds
or simple network units were added to the network without
subsequent equilibration. More recently, Barré er al. [24]
have considered a thermodynamically proper model with an
energy cost associated with stress and showed that in the
canonical ensemble, the intermediate phase still exists. In a
recent paper, we have confirmed this result for the 7=0 ver-
sion of the model of Barré et al., but on a more realistic
regular lattice, and also have shown that the intermediate
phase is entropically feasible in actual physical systems. In
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both the model by Barré et al. and our model, the interme-
diate phase has an unusual property: both percolating and
nonpercolating networks coexist in the ensemble at all mean
coordination numbers within the intermediate phase.

While providing a general support for self-organization,
these previous studies did not look in detail at the properties
of networks in the intermediate phase. Here we provide a
first glimpse at some of these properties. First, we show that
in both percolating and nonpercolating networks, the sizes of
nonpercolating clusters have a power-law distribution. In ef-
fect, the system remains in a critical state over an extended
range of mean coordinations, corresponding to a self-
organized critical phase [25], but in an equilibrium system.
Second, we find that adding or removing a single bond af-
fects the rigidity of macroscopic parts of the network in the
intermediate phase and in particular, can turn a nonpercolat-
ing network into a percolating one and vice versa. This prop-
erty supports the interpretation by Wang and co-workers [18]
of the puzzling response of vibrational frequencies to applied
pressure that was observed in their experiments. Using our
results, we address some intriguing questions that have to do
with the unusual coexistence of percolating and nonpercolat-
ing networks in the intermediate phase. In particular, we
show that percolating and nonpercolating networks can be
considered identical in the intermediate phase, as both stay
on the edge of percolation.

This paper is structured as follows. In the next section, we
briefly review the intermediate phase. We then present our
methodology. In the fourth section, we present our results on
the properties of rigid clusters (both percolating and nonper-
colating) in our model. In Sec. V, we look at the response of
the network to local perturbations. In Sec. VI, we discuss
how our results can help understand the experiments by
Wang et al. [18]. We finish with conclusions.
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II. THE INTERMEDIATE PHASE

Using the mean-field approach first introduced by Max-
well [26] and known as Maxwell counting, we can define the
rigidity of a network in terms of its number of zero-
frequency motions, or floppy modes, F. In a d-dimensional
network, each atom has d degrees of freedom. In an uncon-
strained network of N atoms, each degree of freedom corre-
sponds to a floppy mode and thus F=dN. Assuming that each
added constraint takes away one floppy mode, we can write

F=dN-N,, (1)

where N, is the number of constraints in the network. As N,
increases, F decreases, until =0 is reached, and then there
are no floppy modes left and the network undergoes a rigid-
ity transition from floppy to rigid where a percolating rigid
cluster emerges in the network (rigid clusters are sets of mu-
tually rigid atoms). Disordered networks can be conveniently
characterized by the mean coordination r), which is the av-
erage number of bonds connecting a site. In the mean-field
approximation, the location of the rigidity transition only de-
pends on (r) and not on other details, such as fractions of
sites with a particular coordination. The transition occurs at
(ry=4 for the triangular lattice of elastic springs and (r)
=2.4 in chalcogenide glasses; in the latter case, it is assumed
that both bond-stretching and bond-bending constraints are
taken into account.

To go beyond the mean-field theory, corrections must be
made. For example, adding a constraint to an already rigid
region does not remove a floppy mode. Such type of con-
straint is called redundant. Redundant constraints introduce
stress into the network. Such constraints do not change the
number of floppy modes (and thus violate the assumption of
the Maxwell counting); taking this into account, Eq. (1) be-
comes

F=dN-(N.-N,), (2)

where N, is the number of redundant constraints. Another
type of correction is due to the fact that even above the
rigidity transition there can still be some floppy inclusions
and thus F>0 at the transition.

To find N,, Jacobs and co-workers have introduced a to-
pological algorithm, the pebble game [27,28]. This algorithm
is based on a theorem by Laman [29] which states that in two
dimensions a generic network with N sites and B bonds does
not have a redundant bond if and only if no subset of the
network containing »n sites and b bonds violates b=2n-3. A
similar approach works in 3D, but in general only for bond-
bending networks like those used to model chalcogenide
glasses.

The pebble game, described in more detail in Ref. [28],
characterizes the global rigidity of a network, provides its
complete decomposition into rigid clusters, and finds
stressed regions. The approach uses only the topology of the
network and not its exact geometry. Using the pebble game,
it was possible to show that the rigidity transition occurs at
(ry=3.961 +0.001 [27] for the central-force triangular lattice
and at (r)=2.385 [3] for an amorphous bond-bending 3D
network.
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While early measurements also identified a rigidity tran-
sition in these glasses near (r)=2.4, recent experiments have
shown that there is not one but two transitions [4,7-19].
Starting at low mean coordination, the first transition seems
to go from a floppy to a rigid but unstressed phase, and the
second one on to a rigid and stressed phase. This rigid but
unstressed phase is known as the intermediate phase and is
believed to be related to the self-organization of the system
in order to minimize the stress in the network.

This interpretation is supported by a number of theoretical
works. In their pioneering work, Thorpe and collaborators
demonstrated that a network constructed by adding bonds
with no stress allowed until it becomes inevitable would go
through three phases: a floppy, a rigid-unstressed, and a
rigid-stressed [3]. The first transition, between the floppy and
the rigid-unstressed phases, is the rigidity transition; the sec-
ond one, between the rigid-unstressed and the rigid-stressed
phases, is the stress transition and happens immediately
when avoiding stress is no longer possible. The intermediate
phase survives when the rigid but stress-free networks are
fully equilibrated as was demonstrated by Barré and co-
workers on Bethe lattices [24] and Chubynsky er al. [30] on
two-dimensional triangular lattices. This is not the only ap-
proach to self-organization, however, and Micoulaut and col-
laborators [22,23] have shown that it is possible to recover
an intermediate phase in a stressed network if this stress is
localized.

III. METHODOLOGY

The model we study here is the same as the one used in
our previous paper [30]. In our simulations, we use the
pebble game algorithm described in the previous section; our
computer code is based on the original program by Jacobs
and Thorpe.

We consider two-dimensional (2D) triangular bond-
diluted central-force networks with equal numbers of sites
along the two lattice vector directions and folded into a rect-
angular box with periodic boundary conditions. While we
cannot make a direct comparison with experiment, previous
work has shown that the triangular lattice presents an inter-
mediate phase similar to that of covalent glasses with angular
constraints; our results should therefore be applicable, at
least qualitatively, to experiments.

In the original model of Thorpe and collaborators [3],
bonds were added one by one and each checked for redun-
dancy; redundant (stress-causing) bonds were rejected. Each
new added bond was frozen in the network and was never
moved nor removed. This procedure does not guarantee that
stress-free networks are equiprobable, making some net-
works more likely than others. To eliminate this bias, we
introduced a bond-equilibration scheme, allowing the system
to rearrange itself by moving bonds around. Each time a new
bond is added, bonds are reshuffled throughout the lattice: a
bond is picked at random, removed, and then a new bond is
inserted in a random place choosing among those where it
would not create stress. This bond-shuffling procedure is re-
peated until the system is equilibrated. We find that an equili-
bration of ten iterations per added bond below (r)=3.5 and
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100 iterations above (ry=3.5 is enough for convergence (for
more details, see Chubynsky et al. [30]) and it is the equili-
bration scheme we use throughout this paper, unless stated
otherwise. In equilibrium, all stress-free networks with a
given number of bonds (or mean coordination) are equiprob-
able. This corresponds to the thermodynamic equilibrium at
T—0 for any model in which all stress-free networks have
equal energy, but the energies of stressed networks are
higher.

As discussed in our previous paper [30], the intermediate
phase in the model described above is associated with a non-
trivial probability of finding a percolating network in this
equilibrated model: this probability rises linearly from zero
at the rigidity transition ((r)=3.945) to one at the stress
transition ((r)=4.0), a result similar to that obtained by Barré
et al. on the Bethe lattice [24]. Thus there are both percolat-
ing and nonpercolating networks and these two classes need
to be studied separately.

All results presented in this paper (with the exception of
the cluster size distributions given in Fig. 3) are obtained by
running 200 independent simulations and obtaining the quan-
tities of interest at different (r). When overall averages are
presented, they are obtained by averaging over all these
simulations. When, e.g., an average for percolating networks
is presented, then the averaging is done over only those net-
works that are percolating at the given (r). Obviously, close
to the rigidity transition, very few of the 200 networks are
percolating, and so the corresponding quantity will be an
average over a very small number of realizations and may
contain a bigger error. When we report the results of inser-
tion or removal of a single bond, only one attempt of inser-
tion or removal per network is made, unless stated otherwise.

IV. PROPERTIES OF RIGID CLUSTERS

In this section, we look at properties of rigid clusters
(both percolating and nonpercolating) that exist in self-
organized networks in the intermediate phase. Some proper-
ties of rigid clusters that distinguish them from, e.g., clusters
in usual connectivity percolation, need to be kept in mind.
First, unlike in the connectivity case, a site can belong to
more than one cluster (it then serves as a pivot joint between
the clusters sharing this site). On the other hand, a bond in
2D always belongs to just one cluster (not so in 3D, where it
can serve as a hinge around which several clusters can ro-
tate). For this reason, cluster decomposition in 2D is best
expressed in terms of bonds and not sites. While this is not
generally so, in the case of self-organized networks in the
floppy or intermediate phase, the conversion between cluster
sizes expressed in terms of bonds or sites is easy: since there
is no stress, there is also no redundancy, and every rigid
cluster of n sites contains exactly 2n—3 bonds.

We start with properties of the percolating cluster.

A. Definition of a percolating cluster

Normally, when the probability of percolation is either
zero or one in the thermodynamic limit, the exact definition
of percolation does not matter. In our case, since the prob-
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ability of finding a percolating cluster increases linearly with
average coordination in the intermediate phase, it is not clear
that we can be so cavalier.

For example, the probability that a network percolates in
only one direction (no matter which one), seems to be essen-
tially size-independent in the intermediate phase and thus
should remain nonzero in the thermodynamic limit. (We de-
fine percolation in a particular direction as the presence of a
rigid cluster that spans the network in that direction and con-
nects upon itself across the boundary.) The fraction of net-
works percolating in one direction (1D-percolating networks
for brevity) is always low, never above 10% for all (r). Close
to the lower boundary of the intermediate phase, the fraction
of networks percolating in two directions (2D-percolating
networks) is also low and so, in fact, the fractions of net-
works percolating in one and two directions are comparable.
Yet the fraction of 1D-percolating networks reaches a maxi-
mum at (r)=3.95, immediately above the lower boundary,
and then decreases, approaching zero at the upper boundary
of the intermediate phase at (r)=4, whereas the fraction of
2D-percolating networks increases and reaches one at the
upper boundary. For this reason, the overall fraction (aver-
aged over all (r)) within the intermediate phase is only about
5% for 1D-percolating networks but is around 50% for 2D-
percolating networks.

Since the fraction of 1D-percolating networks, even
though it is low, is nonzero, it is important to specify when
discussing percolation if it is defined using only one direc-
tion or both. In the rest of the paper, we choose to call per-
colating those networks in which percolation occurs in both
directions (2D-percolating), and nonpercolating those net-
works in which there is no percolation in either direction. We
ignore 1D-percolating networks whenever we show results
separately for percolating networks and for nonpercolating
ones (as ID-percolating networks do not belong to either
category, according to our definition), but when overall av-
erages are presented, all networks are taken into account,
including 1D-percolating ones.

B. Size of the percolating cluster

While we have already studied the probability that a per-
colating cluster occurs in the intermediate phase, its size had
not been characterized. Figure 1 shows the average number
of bonds in the percolating cluster as a fraction of bonds
actually present in the network. The averaging is done over
all networks in which percolation occurs. A remarkable fea-
ture is that even at the lowest (r) at which percolation is still
(rarely) observed, the size of the percolating cluster is well
above zero. The smallest cluster size observed at the onset of
the intermediate phase is around 40%. This behavior is dif-
ferent from that for both connectivity and rigidity percolation
on regular lattices in the random (non-self-organized) case,
where the size of the percolating cluster, considered a good
order parameter, grows from zero at the transition, as ex-
pected in a second-order transition. This result in the self-
organized case is reminiscent of the first-order rigidity tran-
sition, such as that observed on Bethe lattices [5,31,32].
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FIG. 1. (Color online) The fraction of bonds belonging to the
percolating rigid cluster among all bonds in the network, averaged
over all percolating self-organized networks, for different network
sizes indicated in the figure. All network sizes here and in other
figures in the paper are given in terms of sites.

However, our other results, as discussed below, do not sup-
port this analogy.

Figure 1 presents average sizes of percolating clusters.
Given that the very existence of the percolating cluster is
uncertain in the intermediate phase (since only some net-
works are percolating), it is reasonable to ask about the
variation of the percolating cluster size. The quantity we look
at is the standard deviation, or width, of the distribution of
the fractions of bonds in the percolating cluster calculated as
VUF?—(F)*)n/(n—1), where F is the fraction of bonds in
the percolating cluster, {---) denotes the average over perco-
lating networks and n is the number of percolating networks.
In ordinary percolation, this width tends to zero as the net-
work size grows; the percolating cluster size is a self-
averaging quantity. Figure 2 shows that this is not so in our
case. The width is above zero and is essentially size-
independent. This is yet another difference from non-self-
organized percolation (including that on Bethe lattices). Note
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FIG. 2. (Color online) The standard deviation of the fraction of
bonds in the percolating cluster for different network sizes, for self-
organized networks.
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at the same time that the width of the distribution of perco-
lating cluster sizes is much smaller than the average size. In
other words, an overwhelming majority of networks have
either a big percolating cluster or no percolating cluster at
all—there are few (if any) “intermediate cases” with small
percolating clusters.

C. Sizes of nonpercolating rigid clusters

To further characterize the intermediate phase, it is useful
to look at the distribution of rigid cluster sizes. In case of a
second-order phase transition, the correlation radius is finite
away from the transition. As a result, at a certain cluster size
there is a crossover from a power-law behavior to an expo-
nential behavior. The correlation radius diverges as the tran-
sition is approached from either side, and so the crossover
moves towards bigger sizes as the transition is approached,
and exactly at the transition, the power law persists indefi-
nitely. Since the divergence of the correlation radius (or the
crossover point) is governed by the same critical exponent on
both sides of the transition, it is expected that for two values
of (r) at the same distance from the transition but on opposite
sides, the crossover points will be the same by order of mag-
nitude, if the transition is second-order. In case of a first-
order transition, the correlation radius does not diverge at the
transition and there is always a crossover to the exponential
behavior.

Figure 3 shows the distribution of rigid cluster sizes at the
coordinations of (r)=3.92 (below the transition) and (r)
=3.97 (above the transition). The points are chosen at about
the same distance from the rigidity transition, far enough
from it to make sure that the correlation radius is not too big
(if the transition is second-order) yet not too far to ensure
that the points are still within the critical region. All results
are obtained by running 200 independent simulations on net-
works of 40 000 sites, each starting from an already equili-
brated network and continuing for 1000 additional equilibra-
tion steps. After each equilibration step, the distribution of
nonpercolating cluster sizes is obtained. While networks one
equilibration step apart cannot be considered truly indepen-
dent, inserting or removing a single bond often changes the
rigidity of the network very significantly, explaining inclu-
sion of the data obtained at every step. For (r)=3.97, the
distributions for percolating and nonpercolating networks are
plotted separately (at (r)=3.92 there are very few percolating
networks and we plot the result for nonpercolating networks
only). To decrease the noise in the tail, all clusters in net-
works of a given class (i.e., percolating and nonpercolating)
are binned using a logarithmic scale.

Below the rigidity transition, in the floppy phase [(r)
=3.92; Fig. 3(a)], there is a clear crossover between the
power-law and exponential behaviors. The data are fitted us-
ing the product of a power law and an exponential:

f1(x) = Cx™ ™1 exp(= x/x,). (3)

We use the data between 107 and ~10*?3, i.e., dropping just
a few data points at the tail, where noise and finite-size ef-
fects are significant, and omitting a region at the low end, as
there are big deviations from the behavior described by Eq.
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FIG. 3. (Color online) The distribution of sizes (given in terms
of bonds) of nonpercolating rigid clusters in nonpercolating self-
organized networks at (r)=3.92 [panel (a)] and in both percolating
and nonpercolating self-organized networks at (r)=3.97 [panel (b)].
The details of the simulation and the fits (lines) are given in the text.

(3), probably due to the discreteness of the lattice. The best
fit is obtained with C;=3000, a;=1.94, and x,=3900. The
dashed line is a power law with the same C; and «;, but
without the exponential factor.

Above the transition [{(r)=3.97; Fig. 3(b)], however, the
power-law behavior persists for nonpercolating networks,
with no hint of the exponential tail, even for the largest sizes
for which the data are available (around 30 000, well above
the crossover observed for (r)=3.92 around x,=3900). For
percolating nets, there is some deviation from the power law
near the end, but it is likely due to finite-size effects (there is
a percolating cluster taking up most of the network, so only
relatively small nonpercolating clusters are possible). To fit
the data, we use pure power-law functions:

fZ{n,p} = C2{n,p}x_a2{"’p}a (4)

where subscripts {n,p} refer to nonpercolating and percolat-
ing networks, respectively. We use data above 10% in the
nonpercolating case and from 10'® to 10>8 in the percolating
case. The values of the parameters providing the best fits are
C,,=6800, ay,=2.12, C;,=9100, and a,,=2.74. While the
difference between «; and a,, is probably due to finite size
and sampling effects, the difference between a,, and a,,
suggests that these two quantities are different.
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Our results indicate that the power-law distribution of
cluster sizes is observed in the whole intermediate phase,
rather than at a single point (as would be the case without
self-organization). In effect, the self-organization, which
minimizes the stress in the network, maintains the system in
a critical state throughout the intermediate phase.

Based on the results of this section, we see that the rigid-
ity phase transition in our model of self-organized percola-
tion is very different from both first- and second-order phase
transitions.

V. RESPONSE TO A LOCAL PERTURBATION

Given that both percolating and nonpercolating networks
coexist in the intermediate phase, it is interesting to investi-
gate the relation between the two classes. As we show in this
section, a local perturbation involving the addition or re-
moval of even a single bond is enough to affect rigidity of
huge regions of the network and often converts a nonperco-
lating network into a percolating one and vice versa.

This behavior is not observed in regular random net-
works: since the probability of percolation in these systems
is always either zero or one in the thermodynamic limit, a
single bond can only change the percolation property right at
the transition. Since a percolating cluster at that point is frac-
tal and involves only an infinitesimal fraction of bonds, if an
infinite cluster is created or destroyed, this can only involve
an infinitesimal fraction of bonds and sites; away from the
transition, the size of the affected region is always finite and
then the fraction is obviously infinitesimally small.

A few general comments about the consequences of addi-
tion or removal of a single bond are in order. First of all, the
removal of a single bond can only break up the cluster to
which this bond belongs; other clusters are not affected. This
is because in 2D, all rigid clusters are always rigid by them-
selves, i.e., they remain rigid when taken in isolation from
the rest of the network. Conversely, the addition of a bond
can merge several rigid clusters into one, but will not affect
the clusters outside the resulting cluster. Note that even
though the self-organized networks are by definition stress-
free, a newly inserted bond can be redundant and introduce
stress (always confined to the cluster in which it is inserted);
in this case the configuration of rigid clusters is not affected,
but the created stressed region may still be macroscopic and
percolate. While we will briefly consider this situation at the
end of this section, we mostly concentrate on the case when
the inserted bond is nonredundant and thus affects the rigid-
ity of the network but does not create stress. For brevity, we
will call the places where insertion of a bond does not create
stress, as well as a bond inserted in such a place, allowed.
Note that if we add an allowed bond creating a certain rigid
cluster and then remove this bond and insert another allowed
bond both ends of which are in the region coinciding with
the cluster created by the first bond, exactly the same cluster
will be created: indeed, the count of constraints within the
region will be the same (2n—3 for a region of n sites), re-
gardless of where in this region the bond is inserted.

A. Conversion between percolating and nonpercolating
networks

We first look at the conversion between nonpercolating
and percolating networks as a result of bond addition and
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Probability of rigidity percolation

Mean coordination {(r)

FIG. 4. (Color online) The probability that a bond added to a
nonpercolating self-organized network at a random allowed place
makes this network percolating.

removal. There are several related questions here.

1. Addition of a bond in an allowed position

In Fig. 4, we plot the probability that inserting a bond at a
randomly chosen allowed place makes a nonpercolating net-
work percolating. In the floppy phase (below (r)=3.945),
this probability tends to zero in the thermodynamic limit;
however, it is nonzero everywhere in the intermediate phase.
This probability is close to zero just above the rigidity tran-
sition and approaches one close to the upper boundary of the
intermediate phase at (r)=4.

We can also ask about the frequency of networks in which
conversion from nonpercolating to percolating upon a single
bond addition is possible at all. That is, for each nonperco-
lating network, rather than trying just one random bond and
seeing if the percolating cluster emerges after its insertion
(which is what we did to obtain Fig. 4), we ask if there exists
any bond whose insertion would create such a cluster. Figure
5 plots the fraction of networks where such bonds exist. As is
expected, this quantity is higher than that plotted in Fig. 4;
but the difference is small: over most of the intermediate
phase, whenever there are any allowed positions where bond
insertion creates a percolating cluster, most allowed positions
will do.

It is also interesting to note that the quantity in Fig. 5 is
very close to linear in the intermediate phase, and is probably
exactly linear, just like the probability of percolation without
any bond insertions. In the Appendix, we explain why these
two quantities are equal.

Finally, in Fig. 6, the average size of the percolating clus-
ter arising after bond insertion is compared to the average
size of the percolating cluster in those cases when it exists
even without bond insertion (i.e., the quantity in Fig. 1).
These values are identical: the size of the percolating cluster
emerging after inserting a bond in a nonpercolating network
is the same as in originally percolating networks. This sug-
gests that a percolating network that arises after bond inser-
tion is a typical percolating network, just like those networks
that percolate without insertion. In the next subsection, we
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FIG. 5. (Color online) The fraction of nonpercolating self-
organized networks such that there exists a bond whose insertion
causes percolation.

present more evidence in favor of this. Also see a more de-
tailed discussion of this in the Appendix.

Given the significant probability of conversion of nonper-
colating networks to percolating ones (see Fig. 5), we can
hypothesize that all nonpercolating networks can become
percolating after a finite number of bond insertions; more-
over, the average size of the percolating cluster after the
minimal number of insertions needed to create it is again the
same as the average size of the percolating cluster in net-
works that are percolating without bond insertions. This hy-
pothesis needs to be tested in the future.

2. Removing a bond from the network

Likewise, we can consider the probability that removing a
randomly chosen bond from a percolating network breaks
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FIG. 6. (Color online) The comparison between the average size
of the percolating cluster in originally percolating self-organized
networks (“without insertion”) and in originally nonpercolating net-
works that become percolating after bond insertion (“after inser-
tion”). The latter quantity is calculated as the average over all net-
works that can become percolating, by using “judicious placement”
of a bond, as described in the text. Networks of 90 000 sites are
used.
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FIG. 7. (Color online) The probability that removal of a ran-
domly chosen bond from a percolating self-organized network de-
stroys percolation.

the percolating cluster. This quantity is shown in Fig. 7. Just
like for bond addition, this probability is nonzero everywhere
in the intermediate phase. Interestingly, even at the upper
boundary ({r)—4), where almost all networks are percolat-
ing, it is still very easy to break percolation and thus create a
nonpercolating network. In fact, the probability is the highest
in this limit. Of course, this can be attributed to the fact that
the percolating cluster is itself the biggest at this point (tak-
ing up the whole network), so there is a greater probability
than elsewhere to select a bond that belongs to it (which is,
of course, a necessary condition of its destruction). This ef-
fect can be factored out by dividing the quantity in Fig. 7 by
the average fraction of bonds in the percolating cluster. This
will then give the probability of the destruction of the perco-
lating cluster, given that the removed bond belongs to this
cluster. This is plotted in Fig. 8. It is seen that across the
whole intermediate phase, this quantity is nearly constant at
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FIG. 8. (Color online) The probability that removal of a random
bond destroys percolation (the quantity in Fig. 7) divided by the
average fraction of bonds in the percolating cluster (the quantity in
Fig. 1). This serves as an estimate of the probability that a bond
chosen at random among those belonging to the percolating cluster
destroys percolation.
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around 70%. In other words, everywhere in the intermediate
phase, the percolating cluster on average contains about 70%
of bonds such that removal of any one of them will destroy
percolation. This is true even close to (ry=4. This is, of
course, just the average; one could ask if for some networks
this quantity is zero (similar to how in the case of bond
insertion, not all nonpercolating networks can be made per-
colating by a single bond addition, as shown in Fig. 5). To
check if this is the case, we remove (and then reinsert) up to
ten bonds one by one (all chosen within the percolating clus-
ter) and see if the percolating cluster ever gets destroyed.
This happened for 5398 out of 5429 90 000-site networks, or
about 99.4%, including 198 out of 200 networks (99%) at
(r)=3.999 (the highest mean coordination in our simula-
tions). Since these fractions are so close to 100%, we can
hypothesize that, unlike in the case of bond insertion, in the
thermodynamic limit all percolating networks have some
bonds whose removal destroys percolation.

To conclude this subsection, our results for the change in
the percolation state of the network upon single bond addi-
tion or removal again confirm that the system remains criti-
cal in the whole intermediate phase.

B. Change of rigidity: “Rigid” and ‘“floppy’’ bonds

In the previous subsection, we have found that in many
cases insertion or removal of a single bond can change the
percolation status of the network and affect the rigidity of its
significant part. Since we were dealing with percolating clus-
ters only, we could not study the effect of bond insertion or
removal in those cases when the percolation status does not
change. To do this, we introduce the concept of “rigid” and
“floppy” bonds.

Below the rigidity transition, only small rigid clusters are
present in the network. Interestingly, a significant fraction of
them consist of just a single bond. The number of bonds
belonging to these single-bond clusters decreases as the ri-
gidity transition is approached and eventually crossed, al-
though they are still encountered well above the transition in
floppy pockets of the network. Since these bonds are associ-
ated with the floppy phase and floppy regions of the network
in the rigid phase, we call such bonds floppy. All other bonds
(i.e., those belonging to clusters consisting of more than one
bond, or, in other words, rigid with respect to some other
bonds) are called rigid. The fraction of rigid bonds as a func-
tion of (r) is plotted in Fig. 9 for both random and self-
organized networks. As expected, it grows in both cases with
increasing (r), but in the self-organized case it reaches 1 at
(ry=4 (when the network becomes fully rigid), which in the
random case does not happen until the full coordination at
(ry=6. For the self-organized case, the averages over just
percolating networks and over just nonpercolating networks
are also shown in Fig. 9. Interestingly, the average for non-
percolating networks remains nearly constant over the whole
intermediate phase at about 75%, even as (r)—4. In this
limit, the number of floppy modes per site tends to zero in all
networks; yet, as these results show, in those few networks
that still do not percolate, many bonds (about 25%) are still
in single-bond clusters.
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FIG. 9. (Color online) The average fraction of rigid bonds in the
network in the random and self-organized cases (in the latter case,
also separately for percolating and nonpercolating networks). All
simulations are for networks of 90 000 sites, the overall averages
are over 200 networks, the averages restricted to percolating and
nonpercolating networks are over those of the 200 self-organized
networks that are, respectively, percolating and nonpercolating.

Just as in the previous section we considered the width of
the distribution of percolating cluster sizes, it is interesting to
look at the width of the distribution of fractions of rigid
bonds. Of course, since the averages are very different for
percolating and nonpercolating networks, it makes sense to
separate these two classes. The results are shown in Fig. 10.
Note that in the intermediate phase, the width is size-
independent and so likely remains finite in the thermody-
namic limit, for both percolating and nonpercolating net-
works, just as we have seen for the percolating cluster size
(see Fig. 2); but in the floppy phase (where, of course, only
nonpercolating networks are present), the width clearly de-
creases fast with size (it is roughly inversely proportional to
the square root of the network size). Thus the number of
rigid bonds is a self-averaging quantity in the floppy phase
but not in the intermediate phase, even when percolating and
nonpercolating networks are considered separately. At the
same time, the widths for both percolating and nonpercolat-
ing cases are much smaller than the difference between these
two cases, so based on the count of rigid bonds, these two
classes are clearly distinct.

We now look at the influence of insertion or removal of a
bond on the number of rigid bonds and their spatial distribu-
tion.

In Fig. 11, we show the average change in the number of
rigid bonds upon insertion of a single bond, in both the ran-
dom and the self-organized cases. Note that in the random
case, this change is very small on average, around ten bonds
or less. On the other hand, in the self-organized case this
quantity diverges very fast when the rigidity transition is
approached. This is not surprising: we have seen that infinite
percolating clusters can easily form in this case. For this
reason, it makes sense to look at the fraction of bonds that
undergo the change.

In Fig. 12, we show the fraction of bonds converted from
floppy to rigid when a bond is added to the network at a
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FIG. 10. (Color online) The standard deviation of the distribu-
tion of fractions of rigid bonds in percolating (a) and nonpercolating
(b) self-organized networks for different network sizes.

randomly chosen allowed position, among all floppy bonds in
the network. In panel (a), we plot the overall average, as well
as partial averages restricted to those cases when the network
goes from nonpercolating to percolating, remains percolating
and remains nonpercolating (the curve for the latter case is
barely above the baseline). In panels (b)—(d), we show these
partial averages for several different sizes. Based on what we
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FIG. 11. (Color online) The average change in the number of
rigid bonds upon addition of a single bond, for random and self-
organized networks of 90 000 sites.
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FIG. 12. (Color online) The average fraction of floppy bonds converting to rigid upon addition of a single bond to a self-organized
network. (a) The overall average, as well as partial averages for the cases when the network converts from nonpercolating to percolating,
remains nonpercolating, and remains percolating, for networks of 90 000 sites. (b)—(d) Partial averages in the nonpercolating — percolating,
percolating — percolating, and nonpercolating — nonpercolating cases, respectively, for three different network sizes. The inset in (d) shows
the average number of converted bonds in the nonpercolating — nonpercolating case.

have already learned for networks switching from nonperco-
lating to percolating, it is quite natural that in this case a
significant fraction of floppy bonds become rigid; this frac-
tion approaches 1 when (r)—4, which is again expected,
since in this limit the percolating cluster takes up the whole
network (see Fig. 6). The other two cases are more interest-
ing. In the floppy phase, only the nonpercolating — nonper-
colating situation is possible, and as we see from Fig. 12(d),
in this region of the phase diagram the average fraction of
bonds converted from floppy to rigid decreases fast with
size. In the inset, we plot the average number (rather than
fraction) of converted bonds, and we see that this number is
size-independent. So in the floppy phase, a finite number of
bonds gets converted. In the intermediate phase, the situation
is different. Looking first at the percolating — percolating
situation [Fig. 12(c)], the fraction of converted bonds de-
pends only weakly on the network size, and it is possible that
this quantity goes to a constant in the thermodynamic limit.
Even if, in fact, this fraction decreases to zero as the size N
goes to infinity, it is clear that the decrease is much slower
than «1/N, and thus the mean number of converted bonds
diverges when N— . In the nonpercolating — nonpercolat-
ing case, the quality of the data is lower (there is very much
noise due to a very large variation in the number of con-
verted bonds), but still it is clear that the decrease with N (if
present) is certainly much slower than oc1/N.

The fact that for the percolating — percolating and non-
percolating — nonpercolating cases the average number of
converted bonds diverges in the thermodynamic limit in the
intermediate phase means that even when the percolation sta-
tus does not change, the region of the network whose rigidity
is affected is macroscopic at least in some cases. This is
again consistent with the criticality of the intermediate phase.
The distribution of the sizes of affected regions (or numbers
of converted bonds) is likely power-law, which needs to be
tested in the future.

As an illustration of effects of bond insertions we show
two examples in Fig. 13. The upper panel shows an example
for the case when the network switches from nonpercolating
to percolating after a bond is added. The lower panel shows
an event where the network remains nonpercolating, but
large-scale rigidification still occurs without percolation. In
both cases, the added bond is pointed with an arrow, thick
green bonds (gray in print) are those that are originally rigid
(and, of course, remain rigid after bond addition), thin bonds
(blue online) are originally floppy and remain floppy, finally,
thick black bonds are of most interest: these are the ones that
switch from floppy to rigid. In the first (nonpercolating —
percolating) case, converted bonds are spread throughout the
network. Many bigger rigid clusters separated by floppy “in-
terfaces” merge into one percolating rigid cluster; in essence,
the figure illustrates the rigidification of these interfaces. In
the second (nonpercolating — nonpercolating) example, the
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FIG. 13. (Color online) Two examples of rigidification of self-
organized networks upon addition of a bond. In the top panel, the
network switches from nonpercolating to percolating. In the bottom
panel, it remains nonpercolating. In both cases, the added bond is
pointed with an arrow, thick green bonds (gray in print) are those
that are originally rigid, thin bonds (blue online) remain floppy,
thick black bonds switch from floppy to rigid. Both networks con-
tain 10 000 sites.

affected region is still large, but nonpercolating. This ex-
ample is larger than average, as can be deduced from Fig.
12(d), but it is not a rare event.

We find overall similar behavior upon removal of a bond.
The results for the fraction of rigid bonds converting to
floppy are in Fig. 14. Similarly to Fig. 12, in Fig. 14(a) we
have the overall average and partial averages for percolating
— nonpercolating, percolating — percolating, and nonperco-
lating — nonpercolating cases, for a single network size
(90 000 sites). In Figs. 14(b)-14(d), we have the same partial
averages, but for three different sizes. Again, the conclusions
are similar to the case of bond insertion: in the percolating —
nonpercolating case, when the percolation status of the net-
work changes [Fig. 14(b)], the fraction of bonds that switch
from rigid to floppy is expectedly high. It is much lower in
the other two cases, when the percolation status does not
change, but still, just as for bond addition, while in the
floppy phase the fraction of converting bonds falls rapidly
with increasing size and, as the inset of Fig. 14(d) shows, the
average number of converting bonds remains constant, in the
intermediate phase the dependence of the fraction of convert-

PHYSICAL REVIEW E 75, 056108 (2007)

ing bonds on the size is very slow and the number of con-
verting bonds diverges in the thermodynamic limit—thus
again, macroscopic regions of the network can be involved.

We finish this subsection with an observation: there exists
a symmetry in bond conversions upon addition and upon
removal. Namely, the average number of bonds converting
upon bond addition in the case when the network transforms
from nonpercolating to percolating is the same as the average
number of bonds converting upon bond removal when the
network transforms from percolating to nonpercolating. This
is illustrated in Fig. 15. In this figure, we plot the ratios of
the above-mentioned numbers and the total number of bonds
in the network. We find that these two quantities coincide.
Note that these quantities are different from those plotted in
Figs. 12 and 14: in these figures, the numbers of converted
bonds were divided by the number of floppy bonds and the
number of rigid bonds, respectively, and not by the total
number of bonds. The equality is easy to understand, if we
recall that we have already seen some evidence (see Fig. 6)
that networks that become percolating after bond insertion
are, in fact, typical percolating networks, just like those that
are originally percolating. By extension, we can assume that
networks that become nonpercolating after bond removal are
also typical nonpercolating networks. If so, then the average
change in the number of rigid bonds should in both cases be
the same as the difference in the average number of rigid
bonds between percolating and nonpercolating networks. In-
deed, in Fig. 15 we also plot the difference between the
average fractions of rigid bonds in the nonpercolating and
percolating cases (i.e., between the dashed and the dot-
dashed lines in Fig. 9); it is seen that this quantity coincides
with the other two.

C. Stress propagation

In the previous subsections, we have looked at cases when
an “allowed” bond insertion is done; in other words, the
bond is inserted in one of those places where it does not
create stress. We now look at the opposite situation, i.e., we
analyze the results of inserting a bond in one of the “disal-
lowed” places. In this case, the inserted bond is redundant,
which means that its insertion does not change the configu-
ration of rigid clusters, but some bonds (including the in-
serted one) become stressed. We are interested in the emerg-
ing stressed region and in particular, whether it percolates or
not.

Similarly to the case of allowed bond insertion, we first
look at the probability that the stressed region percolates.
Note that the stressed region emerging upon bond insertion is
always restricted to the rigid cluster containing the new
bond. For this reason, the stressed region can only percolate
if the original network is percolating (i.e., contains a perco-
lating rigid cluster), and we only need to look at percolating
networks. In Fig. 16, we show the probability that in a net-
work in which rigidity percolates, a percolating stressed re-
gion emerges after insertion of a bond at a randomly chosen
disallowed place (not necessarily within the percolating clus-
ter). We note that apparently, this probability remains finite
(does not go to zero) in the thermodynamic limit.
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FIG. 14. (Color online) The average fraction of rigid bonds converting to floppy upon removal of a single bond from a self-organized
network. (a) The overall average, as well as partial averages for the cases when the network converts from percolating to nonpercolating,
remains nonpercolating and remains percolating, for networks of 90 000 sites. (b)—(d) The partial averages in the percolating — nonperco-
lating, percolating — percolating, and nonpercolating — nonpercolating cases, respectively, for three different network sizes. The inset in (d)
shows the average number of converted bonds in the nonpercolating — nonpercolating case.
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FIG. 15. (Color online) The average fractions of bonds: convert-
ing from rigid to floppy when a bond is removed and the network
switches from percolating to nonpercolating (marked “removal”);
converting from floppy to rigid when a bond is inserted and the
network switches from nonpercolating to percolating (“addition”).
These are compared to the difference between the average fractions
of rigid bonds in the percolating and nonpercolating cases (marked
“difference”). All quantities are for networks of 90 000 sites.

We also look at the sizes of stressed regions arising upon
disallowed bond insertion. The results are in Fig. 17. Figure
17(a) shows the overall average fraction of stressed bonds
and the partial averages for cases when stress does and does
not percolate, for networks of 90 000 sites; Fig. 17(b) gives
the partial average for the case when stress percolates; and
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FIG. 16. (Color online) The probability that a percolating
stressed region forms when a bond is inserted at a random “disal-
lowed” place into a network with a percolating rigid cluster.
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Fig. 17(c) gives the partial average for the case when stress
does not percolate. We do not make distinctions based on the
rigidity percolation status of the network. Again, we see that
the size of the stressed region as a fraction of the total num-
ber of bonds is only weakly network size-dependent and thus
the affected region can be macroscopic in the intermediate
phase even when there is no percolation. In the floppy phase,
on the other hand, the fraction of stressed bonds decays fast
with increasing network size and as the inset (where the
number of conversions, rather than the fraction, is plotted)
shows, the average number of conversions is size-
independent and the affected region remains finite.

VI. CONSISTENCY WITH EXPERIMENTAL EVIDENCE
FOR SELF-ORGANIZATION

Many experiments underline the presence of the interme-
diate phase [4,7-20]. Most of these results can be understood
in terms of a rigid yet unstrained network. However, in re-
cent theoretical models of self-organization with equilibra-
tion [24,30], including the one used in this paper, the net-
work in the intermediate phase only has a finite probability
of possessing a percolating rigid cluster, raising questions as
to the validity of the explanation or of these models. Here we
argue based on the results of this paper that there are really
no problems and our model of self-organization is consistent
with experiments and their accepted interpretations.

Consider, for instance, a recent experiment by Wang et al.
[18] on the atypical response of vibrational frequencies in
glasses to applied hydrostatic pressure. In this Raman scat-
tering experiment, the frequency of the corner-sharing (CS)
tetrahedral units is followed as a function of applied pressure
on the sample. Not surprisingly, the increase in external hy-
drostatic pressure densifies the material, eventually leading
to a blueshifted CS frequency. These experimental results,
published in Ref. [18], are reproduced in Fig. 18.

While in a crystal, blueshift occurs as soon as the pressure
is applied, there is a pressure threshold, P,, in glasses (see
the curves labeled “Floppy” and “Stressed rigid” in Fig. 18).
The explanation for this behavior proposed by Wang et al. is
that at low pressure the impact of the deformation is ab-
sorbed by inhomogeneities in the disordered network, locally
under compressive or tensile stress, resulting at first in a
broadening of the CS peak but without shift (see Ref. [18]);
as the pressure increases, at some point the inhomogeneities
can no longer shield the network, leading to a shift in the
vibrational frequency.

Wang et al. observed, however, that while the pressure
threshold P, is finite in the floppy and the stressed-rigid
phases, it vanishes in the intermediate phase. The original
explanation for this unexpected result was that since in the
intermediate phase the network has percolating rigidity with-
out stress, it is uniformly rigid, with no floppy or overcon-
strained regions, so it has no inhomogeneities to absorb the
deformation and should therefore behave like a crystal. How-
ever, in our model a finite fraction of the networks in the
intermediate phase are floppy; these networks consist of
many clusters of all sizes and thus seem very inhomoge-
neous. But as we have shown in this paper, even when there
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is no percolating cluster, such a cluster has a good chance of
appearing after a single bond insertion; we have also argued
that a finite number of bond insertions is always enough,
even in an infinite network, for a percolating cluster to ap-
pear. Such a percolating cluster has the same properties as in
originally percolating networks, in particular, it always spans
a finite fraction of the network. Of course, insertion of just a
few bonds changes nothing physically, so percolating and
nonpercolating networks, despite appearing very different at
first glance in reality have the same physical properties.

One can then repeat the same arguments that led to the
original conclusion of homogeneity. In the intermediate
phase, there is a percolating region that is either rigid or
becomes rigid after a small number of bond additions. This
percolating region is also stress-free. These properties can
only be achieved by a precise balancing between constraints
and degrees of freedom not just on average, but on all length
scales, in other words, by the network being homogeneous
because of self-organized criticality. We note also that the
way rigidity and stress propagate through a macroscopic
fraction of the network in our simulations upon a perturba-
tion is analogous to how stress propagates uniformly when
external pressure is applied in experiments.

Thus the conclusion is that while the relation between P,
and inhomogeneity still needs to be fully established, assum-
ing that relation, self-organized criticality provides a solid
explanation for the absence of a pressure threshold in the
vibrational frequency of the CS tetrahedral units in the inter-
mediate phase.

Likewise, the self-organized criticality of the network is
also in agreement with other experimental observations in
the intermediate phase. One might ask, for instance, why the
absence of aging of glasses in the intermediate phase [15] is
consistent with our results, given that the configuration of
rigid clusters can change so easily with a single bond addi-
tion or removal so the network appears very ‘“unstable.”
Again, the answer is that changes caused by moving one
bond in or out of the network cannot be significant physi-
cally, no matter what formal rigid cluster decomposition
might suggest.

VII. CONCLUSION

We have studied the structural and response properties of
the intermediate phase in the phase diagram of rigidity per-
colation using a model of self-organization on a 2D triangu-
lar network.

We had shown previously that the probability of rigidity
percolation in the intermediate phase increases linearly from
zero to one as a function of the mean coordination {r). At any
(r), there are both percolating and nonpercolating networks
in the ensemble. In this paper, we have looked at the prop-
erties of both percolating and nonpercolating clusters, the
latter separately for percolating and nonpercolating net-
works. It turns out that at the point at which the percolating
networks first emerge (the rigidity transition), the percolating
cluster takes up about 40% of the network, unlike the case of
the usual second-order phase transition, where the emerging
cluster is fractal and thus the fraction of bonds belonging to
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FIG. 17. (Color online) The average fraction of stressed bonds
in the self-organized network after a single “disallowed” bond is
inserted. (a) The overall average, as well as the partial averages for
cases when stress does and does not percolate, for networks of
90 000 sites. (b) The partial average for the case when stress per-
colates, for three different network sizes. (c) The partial average
when stress does not percolate, again, for three different network
sizes; in the inset the average number of stressed bonds is shown for
the same case.
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FIG. 18. Variations in the vibrational frequency of CS tetrahe-
dral units as a function of pressure for different Ge,Se;_, glasses.
Triangles are results taken from the work of Murase and Fukunaga
[33] and filled circles are results of the work of Wang et al. [18].
The figure is taken from Ref. [18].

it is zero in the thermodynamic limit. The size of the perco-
lating cluster and some other characteristics are not self-
averaging, but the distributions are rather narrow, if percolat-
ing and nonpercolating networks are considered separately.
The distribution of sizes of nonpercolating clusters is expo-
nential at large sizes in the floppy phase, but power law for
arbitrarily big cluster sizes in the whole intermediate phase
and not just at the transition. The power-law exponents are
different for nonpercolating and percolating networks.

We have also looked at the changes in the rigidity of the
network due to a microscopic perturbation in the form of
insertion or removal of a single bond. It turns out that one
bond is often enough to convert a nonpercolating network
into a percolating one and vice versa; moreover, when a non-
percolating network is turned into a percolating one, the av-
erage size of the resulting percolating cluster is the same as
that for the initially percolating networks. In a sense, the
percolating cluster is “hidden” in the nonpercolating network
and is revealed upon addition of a single bond. It appears,
further, that all nonpercolating networks can be converted
into percolating ones with a finite number of bond additions,
with the same size of the resulting cluster as in networks that
percolate without bond addition. This implies that in the ther-
modynamic limit, there is no difference between percolating
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and nonpercolating networks. The intermediate phase can
then be thought of as being the region of the phase diagram
where all networks possess a percolating region that is nearly
isostatic. That is, this region can technically be floppy or
stressed, but the number of floppy modes or redundant con-
straints causing stress is negligible in the thermodynamic
limit. The lower boundary of the intermediate phase is then,
strictly speaking, not the rigidity percolation transition, but
rather the “near-isostaticity” percolation transition.

These unusual properties indicate that the intermediate
phase is a self-organized critical phase, with the system stay-
ing at the rigidity percolation threshold for the whole range
of mean coordinations. Our results are consistent with the
interpretation of recent pressure experiments [ 18] in terms of
network homogeneity. Since rigidity percolation occurs on a
finite fraction of the network under any microscropic pertur-
bation, the strain associated with the external pressure is im-
mediately transferred to a macroscopic fraction of the
sample, leading to a shift in the Raman spectrum.

We can certainly expect other surprises associated with
this intermediate phase in the rigidity phase diagram, but for
that, we will likely need to create more realistic models of
the experimental systems.
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APPENDIX: RELATION BETWEEN THE PROBABILITY
OF PERCOLATION IN THE INTERMEDIATE
PHASE AND THE PROBABILITY OF INDUCING
PERCOLATION BY SINGLE BOND INSERTION

Numerically, we observe that the probability that there
exists a place in a nonpercolating network such that insertion
of a bond at that place causes percolation is the same linear
function in the intermediate phase as the probability of rigid-
ity percolation (see Fig. 5). Here we show that this equality
is a necessary consequence of the latter quantity being finite
(between zero and one) and continuous throughout the inter-
mediate phase. In the proof, we also rely on our observation
that percolating networks obtained from nonpercolating ones
by bond insertion are typical percolating networks (see the
discussion of Figs. 6 and 15). In particular, we assume that
averages of various quantities for such networks are the same
as these averages over the ensemble of stress-free percolating
networks where all such networks are equiprobable (which is
the ensemble generated by our equilibration procedure).
Since this assumption is based on numerical evidence, it is,
strictly speaking, only a conjecture, but even if it is only
approximate, the accuracy is very good. More on this as-
sumption below.
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Given the probability of percolation among networks with
B bonds, we can calculate this probability for networks with
B+1 bonds. The method is similar to that used to calculate
the bond-configurational entropy of self-organized networks
in our previous paper [30]. Suppose there are Ny (B) net-
works (or bond configurations) with B bonds that are stress-
free. If the probability of percolation is s(B), then N,(B)
=5(B)N,.(B) of these are percolating and the rest, N,(B)
=[1-s(B)]Ny.(B), nonpercolating. Also suppose there are on
average N,,(B) allowed places to insert a bond in percolating
networks and N,,(B) in nonpercolating networks and the
probability that a nonpercolating network becomes percolat-
ing upon a random bond insertion is m(B). Since all perco-
lating networks will remain percolating upon bond insertion,
then an average percolating network with B bonds will pro-
duce N,,(B) different percolating networks. On the other
hand, only a fraction 7(B) of nonpercolating networks will
become percolating, so an average nonpercolating network
will produce m(B)N,,(B) percolating networks and [I
—1(B)]N,,(B) nonpercolating networks. If we simply multi-
ply these numbers by the number of networks with B bonds
of each kind, this will not produce the correct count of per-
colating and nonpercolating networks with B+1 bonds be-
cause each such network can be obtained in many different
ways. Specifically, each network with B+1 bonds can be
produced by bond insertion from as many different networks
with B bonds as there are the latter that can be obtained by
bond removal from the former. This number is always B+1,
since removal of every bond will produce a distinct network
and all of them are stress-free. So the count has to be divided
by B+1, and we get for the number of percolating networks
with B+1 bonds,

Ny 1) = el B B BNl )

. (AD

and for the number of nonpercolating networks with B+1
bonds,

N,(B+1) Bl

(A2)

Then the probability of percolation for a network with B+1
bonds is

N,(B+1)
N,(B+1)+N,(B+1)
_ Ny(BINyp(B) + N,(B)m(B)N,(B)
N,(B)Nyp(B) + N, (B)N,y(B)

s(B+1)=

(A3)

Note that since the probability of percolation changes con-
tinuously, the difference between s(B+1) and s(B) is
O(1/N), where N is the network size. Neglecting terms that
are O(1/N), we should equate s(B+1)=s(B) and then, omit-
ting the argument B for brevity and using N,/(N,+N,)=s,

_ SNy + (1 = 5)Nyy
SN+ (1= 5Ny,

; (A4)

or
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At this point, we must use our conjecture that averages for
networks obtained by bond insertion are the same as for the
ensemble of equiprobable networks. Note that if all quanti-
ties associated with self-organized networks of a particular
class (percolating or nonpercolating) were self-averaging,
this would be fully expected. Indeed, in this case, atypical
networks with parameters different from the average are in-
finitely rare in the thermodynamic limit; for such networks to
be produced with a nonzero probability they need to be infi-
nitely more likely to be produced by bond insertion than
typical networks, in other words, there needs to be an infi-
nitely strong bias towards atypical networks. But this cannot
be true: as shown above, each network can be produced in
exactly B+1 ways, and networks with B bonds with prob-
ability 1 can produce either N,, (if percolating) or N,, (if
nonpercolating) different networks [in any case, O(N)], so
infinite bias is impossible. However, note that in our case, at
least some properties of self-organized networks are not self-
averaging (see Figs. 2 and 10). In this case, any finite bias
can produce an ensemble of networks with average param-
eters slightly deviating from the averages over the ensemble
where all networks are equiprobable. Note, however, that the
widths we observe in Figs. 2 and 10 are very small, much
smaller than the averages. This explains why the deviations
should at least be very small. The fact that we see no devia-
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tions may mean that they are so small as to be undetectable;
or there may be some subtler reasons for there to be no
deviations at all. In what follows, we conjecture that there
are no deviations.

Applying our conjecture means that on average, when a
bond is inserted into a nonpercolating network and it be-
comes percolating, the change in the number of allowed
bonds is N,,—N,, But bonds that become disallowed are
exactly those that are within the percolating cluster. Accord-
ing to our argument at the end of Sec. V, insertion of any of
these bonds will also create the same percolating cluster and
thus make the network percolating. On the other hand, inser-
tion of any of the other allowed bonds will not cause perco-
lation. Indeed, since these bonds are not within the original
percolating cluster, the cluster that insertion of such a bond
would create cannot overlap with the original percolating
cluster over any of the allowed bonds and it is extremely
unlikely (probably impossible in the thermodynamic limit)
that a region that does not overlap with a percolating region
over any allowed bonds is also percolating. So, if for a given
network making it percolating after one bond insertion is at
all possible, then the probability that percolation will occur
after random insertion is equal to the fraction of allowed
bonds within the percolating cluster, or (Ny,—N,,)/Ny,, and
then the right-hand side of Eq. (A5) is exactly the probability
that percolation after one bond insertion is possible, and the
proof is complete.
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